Chocolate craving

The effect of visualisation and mindfulness-based decentering on chocolate craving

Emma Wilson a b c
Victoria Senior c
Katy Tapper b

a Correspondence address: King’s College London, Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, De Crespigny Park, London SE5 8AF, UK emma.wilson@kcl.ac.uk

b City, University of London, Department of Psychology, School of Social Sciences, Whiskin Street, London, EC1R 0JD, UK Katy.tapper.1@city.ac.uk Tel: +44 (0)2070 408500

c BPP University, Department of Psychology, 137 Stamford Street, London SE1 9NN
Chocolate craving

Abstract

According to the elaborated intrusion (EI) theory of desire, loading visual working memory should help prevent and reduce cravings because cravings occur when intrusive thoughts are elaborated upon in working memory, often as vivid mental images. Mindfulness-based decentering strategies may also help prevent and reduce cravings since they may divert attention away from craving-related thoughts and mental imagery. To compare the effects of visualisation versus decentering on cravings, participants ($N = 108$) were randomly assigned to one of three conditions: (a) decentering, (b) visualisation, (c) mind-wandering control. Participants in each condition received two audio exercises: (1) a 2-minute exercise, preceding a craving induction but after initial deprivation and cue exposure, (2) a 4-minute exercise, following a craving induction. The audios instructed participants to look at a plate of chocolate that was in front of them whilst either (a) decentering from their thoughts and feelings, (b) engaging in visualisation or (c) letting their mind wander. Participants were asked to rate the strength of their cravings at four time points (Time 1, baseline; Time 2, after the 2-minute audio; Time 3, post-craving induction; Time 4, post-4 minute audio). Frequency of craving-related thoughts was also measured at Time 4. Compared to the control condition, results showed a significant reduction in strength of cravings for the decentering condition after both the 2-minute audio and the 4-minute audio. Decentering was superior to visualisation only after the 2-minute audio. Participants in both the visualisation and decentering conditions also had significantly lower frequencies of craving-related thoughts compared to control participants. The findings support EI theory and suggest that mindfulness-based decentering strategies may be useful for both the prevention and reduction of cravings. Pre-registration: https://osf.io/jv3pq

Keywords: mindfulness; mindful eating; decentering; craving; visualisation; elaborated intrusion theory
Chocolate craving

1. Introduction

Craving refers to a subjective motivational state that compels a person to consume a particular substance, such as alcohol or drugs, but also food (Baker et al., 1986; May et al., 2015; Shiffman, 2000). Chocolate is thought to be the most widely craved food in the Western world, particularly among women (Erskine & Georgiou, 2013). For most people, occasional food cravings occur without causing any problems (Lafay et al., 2001). However, if cravings become maladaptive, they may lead to disordered eating, including binge eating (Ng & Davis, 2013), low mood and depression (Davis et al., 2011), as well as health problems associated with obesity (von Deneen & Liu, 2011).

The elaborated intrusion theory of desire (EI theory) is a cognitive model that specifies two stages to the development of a craving: intrusion and elaboration (Kavanagh et al., 2005; May et al., 2015). EI theory describes how intrusive thoughts about food occur when a person associates their eating with certain cues. These cues could be internal, such as feeling tired or stressed, or external, such as walking past a bakery on the morning commute or seeing certain foods in the supermarket (Kavanagh et al., 2005; Sun & Kober, 2020; Tapper, 2018). These cues trigger intrusive thoughts about food that may then be elaborated upon in limited capacity working memory systems, most frequently through the sensory modalities of taste, smell and sight (Tiggemann & Kemps, 2005). It is this elaboration that leads to a feeling of craving, which can also interfere with other cognitive tasks (Kavanagh et al., 2005).

Researchers interested in managing food cravings have often targeted the elaboration stage in order to reduce their strength after they have occurred. Effective strategies include those that interrupt elaboration by competing for visuospatial working memory (Kavanagh et al., 2005; May et al., 2010; May et al., 2012), for example, with visual tasks such as Tetris (Skorka-Brown et al., 2014), dynamic visual noise (Kemps et al., 2004), or imagining non-food scenes (e.g., a rainbow; Harvey et al., 2005), and spatiomotor control tasks such as clay modelling (Andrade et al., 2012). Guided imagery, or visualisation, has also been shown to reduce craving intensity for self-reported chocolate cravers (Experiment 2, Schumacher et al., 2017) and a general student population (Hamilton et al., 2013).

Another way in which the elaboration stage has been targeted is through the use of decentering. Decentering is a mindfulness-based strategy where thoughts and feelings are...
viewed as transient mental events that are separate from oneself (Bishop et al., 2004; Lebois et al., 2015). Decentering may interrupt craving-related elaboration by diverting attention away from craving-related mental imagery. For example, if imagery relating to the taste of chocolate is followed by an awareness of this imagery as simply ‘thoughts’, it may in turn be followed by other more general thoughts, such as healthy eating related goals (Tapper & Ahmed, 2018). Several studies have supported the view that decentering can reduce craving strength (Schumacher et al., 2018; Tapper, 2018).

An alternative approach to managing cravings is to target the intrusion stage in order to prevent craving-related intrusive thoughts from being elaborated, in full, or at least with less intensity. According to EI theory, this should weaken craving development. Again, both visualisation and decentering strategies could achieve this by loading visual working memory and/or helping to divert attention elsewhere. Although there is limited research specifically examining the effects of these strategies on the intrusion stage of craving, several studies have found significant effects on cravings and consumption outside the laboratory and it is possible that such effects were in part brought about by weakening craving development (as opposed to reducing craving strength once it had occurred; Jenkins & Tapper, 2014; Schumacher et al., 2018; see also Tapper, 2018).

Few studies have directly compared the effects of visualisation versus decentering. One exception is Schumacher et al. (2017) who, across two studies, looked at the effects of these strategies on craving reduction (i.e., after a craving induction). Study 1 recruited a general sample whilst Study 2 recruited habitual chocolate cravers. Compared to a control condition, they found reductions in craving strength for the decentering group in both studies, but in the visualisation group craving reduction only occurred in the second study. In a subsequent field study (Schumacher et al., 2018) they found that both visualisation and decentering were effective at reducing craving frequency and intensity over a 7-day period.

However, decentering strategies typically also include elements of visualisation. Thus an important limitation of these studies is that it is difficult to rule out the possibility that the effects of decentering occurred simply because of the visualisation element. Tapper and Turner (2018) attempted to address this issue by using visualisation and decentering strategies that were matched for visualisation. Using 4-minute audio exercises, they looked at
Chocolate craving

the effects of (1) decentering, (2) visualisation, and (3) mind wandering (control) on chocolate cravings following a craving induction. However, there was a reduction in cravings across all conditions with no significant differences between conditions. Nevertheless, exploratory analyses showed that decentering was more effective than visualisation when overall task adherence was high.

The present study aimed to extend this research by looking at the effects of decentering and visualisation on both craving development (i.e., pre-craving induction) as well as craving reduction (i.e. post-craving induction). Specifically, we examined the effects of decentering and visualisation on craving both prior to and following a craving induction, targeting the intrusion and elaboration stages of craving. Additionally, and in contrast to Tapper and Turner (2018), we asked participants to keep their eyes open rather than closed during the decentering and visualisation exercises; we felt this might better reflect the type of strategy that could be more readily employed in daily life, for example in the office, at a party or when passing the supermarket’s confectionary aisle.

Thus the first aim of the study was to compare the effects of decentering and visualisation on craving development. In other words, after initial deprivation and cue exposure, but before a more intense craving induction. We predicted a smaller increase in the strength of chocolate cravings for visualisation compared to mind wandering (Hypothesis 1a) and for decentering compared to mind wandering (Hypothesis 1b). Because the decentering and visualisation strategies were matched for visualisation (i.e., the decentering strategy incorporated both visualisation and decentering), we also predicted a smaller increase in strength of cravings for decentering compared to visualisation (Hypothesis 1c).

The second aim was to test the effects of decentering and visualisation on craving reduction. In other words, after participants had undergone a more intense craving induction. We predicted a larger decrease in strength of chocolate cravings for visualisation compared to mind wandering (Hypothesis 2a) and for decentering compared to mind wandering (Hypothesis 2b). Again, because the decentering and visualisation strategies were matched for visualisation, we also predicted a larger decrease in strength of cravings for decentering compared to visualisation (Hypothesis 2c).
Chocolate craving

The third aim was to test the effects of the two strategies on the frequency of chocolate cravings following the craving induction (i.e., during the craving reduction stage). We predicted a lower frequency of chocolate cravings for visualisation compared to mind wandering (Hypothesis 3a) and for decentering compared to mind wandering (Hypothesis 3b). As before, we also predicted a lower frequency of cravings for decentering compared to visualisation (Hypothesis 3c).

The final aim was to test the moderating effect of self-reported task adherence on the relationship between the conditions and craving strength, after the craving induction (i.e., during the craving reduction stage). We predicted that the effect of condition on craving strength would be greater with higher levels of task adherence. Hypothesis 4a compared visualisation with mind wandering, Hypothesis 4b compared decentering with mind wandering and Hypothesis 4c compared decentering with visualisation. The study hypotheses, method and analysis plan were pre-registered at https://osf.io/jv3pq

2. Methods

2.1. Participants

Participants were 108 females (n = 63) and males (n = 45) with a mean age of 26.7 years (SD = 9.6; range = 18 - 67 years), who responded to adverts seeking ‘chocolate lovers’ interested in research on managing cravings for sugary foods such as chocolate bars. Participants across three London universities were recruited via posters placed around the university buildings, adverts on university websites and student newsletters, and the social media accounts of the first author. Participants were offered compensation for their time of £5 and/or the chocolate bar selected during the craving induction. Inclusion criteria were aged 18 years or over and consumption of chocolate at least 4 times per month. Exclusion criteria were a current diagnosis of an eating disorder, pregnancy, and medication or health conditions (e.g., allergies, diabetes) that would prevent them from fasting for 2 hours or from eating sugary snacks. The target sample size was 36 participants per condition. This was informed by Tapper and Turner (2018) who used the same scale in relation to chocolate craving. It assumed a mean baseline craving of 16 out of 30 (SD = 7) and was powered to detect a mean difference of 5 in craving level between conditions. Ethical approval was received by City, University of London Psychology Department Research Ethics Committee in March 2019.
Chocolate craving

2.2. Craving induction
Following Kemps and Tiggemann (2007), a combination of deprivation and cue exposure were used to induce chocolate cravings. This occurred in two stages, to induce the occurrence and elaboration of intrusive craving-related thoughts at different levels of intensity. In the first stage (Time 1), a plate of four wrapped chocolate products (Dairy Milk, 45g; Snickers, 48g; Bounty, 57g; three Lindor truffles, 40g total) were placed in front of participants, to the left of the computer, with an empty plate placed directly in front of them. These chocolates were visible as soon as the participant entered the room. The second stage (after Time 2) was a more intense craving induction that utilised more sensory modalities; participants were instructed to choose their favourite type of chocolate from the plate, unwrap it, smell it, and place it with its wrapper on the empty plate directly in front of them. They were instructed not to eat the chocolate. If the Lindt chocolate was selected, participants were asked to unwrap all three pieces. Participants were asked to select the name of the chocolate they had chosen and, using a visual analogue scale from 0-100, rate how much they liked it (from 0 = not at all to 100 = very much) and how much they felt like eating it (from 0 = no desire or urge to 100 = extreme desire or urge).

2.3. Experimental manipulation
Participants in all three conditions listened to 2-minute and 4-minute audio recordings with instructions modified from Tapper and Turner (2018). In the visualisation and decentering conditions participants were asked to imagine themselves sitting in a forest by a stream. In the decentering condition they were asked to imagine placing any thoughts or feelings onto a leaf and watch it float down the stream (Hayes, 2005, pp. 76-77; Rogers & Hardman, 2015). In the visualisation condition they were simply asked to imagine watching the leaves float by. In the control condition, participants were asked to let their mind wander. The opening and closing instructions were identical across all three conditions (e.g., ‘sit back and relax but keep your eyes on the chocolate’; ‘you can now look around the room’), and the number and timings of all other audio instructions were matched across the conditions. Participants were asked to keep their eyes open throughout the experimental manipulation. (See Supplementary Files for scripts).
Chocolate craving

2.4. Measures

2.4.1. Hunger. Participants were asked to ‘indicate how hungry you feel right now’ using a sliding scale from 0 (not at all hungry) to 100 (extremely hungry). They were also asked to indicate when they last ate and when they next expected to eat, though in light of Rogers and Hardman (2015) we subsequently excluded these as indices of hunger.

2.4.2. Craving. Strength and frequency of craving-related thoughts were assessed using the intensity sub-scales of the Craving Experience Questionnaire-Strength (CEQ-S; May et al., 2014) and Craving Experience Questionnaire-Frequency (CEQ-F; May et al., 2014). The CEQ-S and CEQ-F both have sub-scales relating to intensity, imagery and intrusiveness. In this study, the intensity sub-scale of the CEQ-S was used to measure current strength of cravings at four intervals. The sub-scale comprises three items scored from 0 (not at all) to 10 (extremely): ‘Right now, how much do you WANT chocolate?’; ‘Right now, how much do you NEED chocolate?’; ‘Right now, how strong is the urge to have chocolate?’ The intensity sub-scale of the CEQ-F was used once to measure craving frequency and comprises three items also scored from 0 (not at all) to 10 (extremely): ‘During the 4-minute audio recording, how often did you WANT chocolate?’; ‘During the 4-minute audio recording, how often did you NEED chocolate?’; ‘During the 4-minute audio recording, how often did you have a strong urge for chocolate?’ In a previous study on chocolate cravings (Andrade et al., 2012), the CEQ scales have been shown to have high internal reliability: CEQ-S (α = .93), CEQ-F (α = .97). In the current study, the scales also showed good internal reliability: CEQ-S (α ranged between .83 – .88 across Time 1 to Time 4), CEQ-F (α = .91).

2.4.3. Task adherence. As per Tapper & Turner (2018), participants were asked to report on two measures of task adherence: how well they followed the instructions during the 4-minute audio recording (‘overall adherence’) and if they were still following the instructions towards the end of the 4-minute audio recording (‘end adherence’). Both measures were scored from 0 (not at all) to 10 (all of the time). Additionally, an open-ended question asked what they were thinking about during the audio recording. The measure of end adherence and the open-ended question were included as exploratory measures.
2.5. Procedure

Participants meeting the eligibility criteria were offered a 30-minute appointment at the university and were asked to refrain from eating chocolate products for 24 hours prior to this time. They were also asked to abstain from eating or drinking anything other than water for 2 hours prior to the appointment. The experiment was delivered using Qualtrics, an online survey software that collected all measures and randomised participants to one of the three conditions, stratifying by gender (see Figure 1).

Testing took place in a quiet room. Participants were first asked to report their gender, age and first language, and whether they had eaten any chocolate products in the past 24 hours, or any food or drink other than water in the past 2 hours. If they answered yes to either of these questions, they were asked to specify what they had eaten and when. They then completed measures of hunger and the CEQ-S (Time 1), before being randomised to one of the three conditions (decentering, visualisation or control) and listening to the relevant 2-minute audio. They then completed the CEQ-S for the second time (Time 2), underwent the craving induction, followed by the CEQ-S (Time 3). After this they listened to the 4-minute audio for their allocated condition (decentering, visualisation or control) and completed the CEQ-S for a fourth and final time (Time 4). Finally, participants completed the CEQ-F and task adherence measures as well indicating whether or not they were dieting to lose weight. They also completed exploratory measures of stress and self-esteem that are not discussed in this article.
Figure 1. Flow diagram of study procedures. CEQ-S = Craving Experience Questionnaire-Strength. CEQ-F = Craving Experience Questionnaire-Frequency. Additional measures not reported here.

3. Results

3.1. Participant characteristics

As shown in Table 1, more people in the visualisation condition were dieting to lose weight and adhered to the 24-hour chocolate abstinence instructions. This group also had lower baseline levels of craving and hunger but were slightly less likely to have adhered to the 2-hour fasting instructions. Baseline levels of current craving were similar across the three conditions. Gender and age were well-matched across conditions.
Table 1. Characteristics of Study Participants in Each Condition

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Decentering (n = 36)</th>
<th>Visualisation (n = 36)</th>
<th>Control (n = 36)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage of females</td>
<td>58%</td>
<td>58%</td>
<td>58%</td>
</tr>
<tr>
<td>Age (M, SD)</td>
<td>27.8 (11.5)</td>
<td>26.0 (8.5)</td>
<td>26.3 (8.7)</td>
</tr>
<tr>
<td>Percentage dieting to lose weight a</td>
<td>11%</td>
<td>22%</td>
<td>11%</td>
</tr>
<tr>
<td>Percentage adhering to chocolate abstinence</td>
<td>72%</td>
<td>83%</td>
<td>61%</td>
</tr>
<tr>
<td>Percentage adherence to fasting instructions</td>
<td>94%</td>
<td>86%</td>
<td>94%</td>
</tr>
<tr>
<td>Hunger score (M, SD)</td>
<td>58 (23)</td>
<td>52 (25)</td>
<td>60 (26)</td>
</tr>
<tr>
<td>Strength of current chocolate cravings (CEQ-S) at baseline (M, SD) b</td>
<td>15 (7)</td>
<td>13 (6)</td>
<td>15 (8)</td>
</tr>
</tbody>
</table>

Note. CEQ-S = Craving Experience Questionnaire-Strength

a Declined to say: Decentering (n = 2), Visualisation (n = 1), Control (n = 1).
b CEQ-S scores could range from 0 – 30.

3.2. Effects on strength of cravings

To explore craving development (i.e., after initial deprivation and cue exposure, but before an intense craving induction), a 2 (time) x 3 (condition) mixed ANOVA on strength of cravings at Times 1 and 2 showed no significant main effects of time, $F(1, 105) = 0.03$, $p = .858$, $\eta^2_p = 0.00$, or condition, $F(2, 105) = 2.55$, $p = .083$, $\eta^2_p = 0.05$. However, as predicted there was a significant interaction between time and condition, $F(2, 105) = 10.73$, $p < .001$, $\eta^2_p = 0.17$, (see Figure 2).
Figure 2. Mean levels of strength of cravings in the three conditions, at four time points.

To explore this interaction, change scores (from Time 1 to Time 2) were computed for each of the three conditions. These were $M = -2$ ($SD = 5$) for decentering, $M = 0$ ($SD = 5$) for visualisation and $M = 2$ ($SD = 3$) for control. As predicted, follow-up t-tests showed significant differences between the decentering and control conditions, $t(52.17) = 5.02, p < .001, d = 0.97$, between the visualisation and control conditions, $t(52.69) = 2.44, p = .018, d = 0.49$, and between the decentering and visualisation conditions $t(70) = 2.10, p = .040, d = 0.40$.

To explore craving reduction (i.e., after the more intense craving induction), a 2 (time) x 3 (condition) mixed ANOVA on strength of cravings at Times 3 and 4 showed a significant main effects of time, $F(1, 105) = 13.12, p < .001, \eta^2 = 0.11$, and condition, $F(2, 105) = 4.21, p = .017, \eta^2 = 0.07$. As predicted, there was also a significant interaction between time and condition, $F(2, 105) = 5.64, p = .005, \eta^2 = 0.10$. Again, change scores (between Times 3 and 4) were computed for each condition to explore this interaction: decentering, $M = -3$ ($SD = 5$); visualisation, $M = -2$ ($SD = 5$); control, $M = 0$ ($SD = 4$). As predicted, follow-up t-tests revealed significant differences between the decentering and control conditions ($t(65.38) = 3.63, p = .001, d = 0.66$) and between the visualisation and control conditions ($t(70) = 2.10, p$...
Chocolate craving

= .039, d = 0.44). Contrary to predictions, there was no significant difference between the
decentering and visualisation conditions (t(70) = 1.15, p = .253, d = 0.20).

3.3. Effects on frequency of cravings

Mean frequency of cravings (Time 4) was 12 (SD = 8) in the decentering condition, 13 (SD =
8) in the visualisation condition and 18 (SD = 9) in the control condition. A one-way
between-groups ANOVA found a significant effect of condition, F(2, 105) = 4.70, p = .011,
ηp² = 0.08. Follow-up t-tests showed that, as predicted, craving frequency was lower in the
decentering and visualisation conditions compared to the control condition; t(70) = 2.87, p =.
005, d = 0.70 and t(70) = 2.32, p = .023, d = 0.59 respectively. However, contrary to
predictions, there was no significant difference between the visualisation and decentering
conditions; t(70) = 0.55, p = .586, d = 0.13.

3.4. Moderating effects of task adherence

Mean overall task adherence (Time 4) was 7 (SD = 2) in the decentering group, 7 (SD = 2) in
the visualisation group, and 9 (SD = 1) in the control group. A one-way ANOVA showed
these were significantly different; F(2,105) = 18.97, p < .001, ηp² = 0.27.

Two hierarchical regression models were used to estimate the moderating effect of overall
task adherence on the effect of condition on change in strength of cravings between Time 3
and Time 4. Overall task adherence was entered at Step 1, condition at Step 2, and the
interaction term at Step 3. The dependent variable was change in craving score between Time
3 and Time 4. In the first model the experimental conditions (decentering/visualisation) were
compared with the control condition (experimental = 1, control = 0) whilst in the second
model the decentering condition was compared with the visualisation condition (decentering
= 1, visualisation = 0). Contrary to predictions, neither model showed an interaction between
condition and overall task adherence (first model: b = -0.44, SE B = 0.74, β = -0.31, p = .555;
second model: b = 0.52, SE B = 0.74, β = 0.36, p = .480).

Exploratory analysis also examined end adherence scores (decentering: M = 7, SD = 2;
visualisation: M = 7, SD = 2; control, M = 9, SD = 1). When end adherence scores were used
in the models described above, these showed a significant interaction when the experimental
conditions were contrasted with the control condition \((b = -1.27, SE B = 0.63, \beta = -0.93, p = .045)\), but not when the decentering condition was contrasted with the visualisation condition \((b = 0.98, SE B = 0.54, \beta = -0.68, p = .076)\). Simple slopes analysis on centred variables showed that when end adherence was low (1 SD below the mean), there was no effect of experimental versus control condition on change in craving \((b = -0.02, 95\% CI [-0.31, 0.26]; t = -0.01, p = .991)\). However, at mean levels of end adherence, and when end adherence was high (1 SD above the mean), there were greater reductions in craving in the experimental conditions compared to the control condition \((b = -2.74, 95\% CI [-5.22, -0.25]; t = -2.18, p = .031\) and \(b = -5.45, 95\% CI [-8.02, -2.89]; t = -4.21, p < .001\) respectively). The Johnson-Neyman method indicated that the transition point occurred when end adherence was -0.14 SDs below the mean, with all scores above this showing a significant effect of condition on craving change.

4. Discussion

The results showed that both decentering and visualisation reduced craving strength and frequency following a craving induction. These findings are in line with a number of previous studies (Hamilton et al., 2013; Schumacher et al., 2017; Tapper, 2018). They are also consistent with EI theory that predicts that these strategies will interfere with the process of elaboration which underpins cravings (Kavanagh et al., 2005; May et al., 2015). The results of the present study also extend previous research by showing that both decentering and visualisation were able to weaken the development of cravings. This may be because the strategies prevented intrusive thoughts from being elaborated upon, either partially or in full. Ultimately, targeting cravings at this earlier stage in their development may be a more effective strategy for two reasons. First, it may prevent the development of very strong cravings and so may reduce the likelihood of cravings leading to consumption. And second, it may be easier for a person to choose to engage in decentering or visualisation at this point; according to EI theory, craving-related imagery is initially pleasurable, thus once a person reaches the elaboration stage they may be less inclined to engage in decentering or visualisation. This interpretation is consistent with the fact that our results also showed that decentering and visualisation were not effective at reducing cravings when participants reported low adherence to these strategies. Future research would benefit from comparing levels of strategy adherence during craving development versus craving reduction.
An important strength of the current study is that, like Tapper and Turner (2018), visualisation was matched across the visualisation and decentering conditions. Since decentering strategies tend to include elements of visualisation, this matching allows more confidence that any extra advantage gained by the decentering strategy was due to the decentering elements, rather than just additional visualisation. The results showed that the decentering strategy was indeed more effective than visualisation when used to weaken craving development (i.e., following cue exposure but prior to a craving induction). We speculate that this may be because decentering increases the accessibility of other thoughts and goals that are important to the individual, some of which may be incompatible with satisfying the craving (Tapper & Ahmed, 2018). This in turn may help motivate the individual to continue with the strategy and keep their attention diverted away from craving-related imagery. However, other interpretations are possible, in particular, the grounded cognition theory of desire states that decentering works by reducing the subjective realism of intrusive craving-related thoughts and mental imagery (Papies et al., 2011). Further research would be needed to distinguish between these two accounts.

However, in contrast to the above findings, and to Schumacher et al. (2017), there was no evidence to indicate that decentering was superior to visualisation at reducing craving following an intense craving induction that utilised multiple sensory modalities. Further research using Bayesian analysis could help confirm the absence or presence of a difference in efficacy between the two strategies at this point in the craving process.

An additional strength of our study was that we asked participants to keep their eyes open whilst engaging in the two strategies. This is in contrast to Tapper and Turner (2018) where participants were asked to close their eyes and where equivalent levels of craving reduction were seen across all three conditions (i.e., in a mind wandering control condition as well as in the decentering and visualisation conditions). Whilst many previous studies do not indicate whether participants were directed to keep their eyes open or closed, it is possible that strategy effects only emerge when participants’ eyes are open and when the food item is maintained within their field of vision, making intrusive thoughts more likely. Where a participant closes their eyes or diverts their gaze away from the food it may become easier for those in the control condition to employ their own effective strategies. For example, in
Chocolate craving

Tapper and Turner, participants in the control group reported thinking about things such as course assignments or their plans for the rest of the day; thoughts that were likely sufficiently engaging to prevent craving-related elaboration. From an applied perspective, a strategy that allows one to keep one’s eyes open is also likely to be easier to implement in everyday life.

Nevertheless, the study had a number of limitations that are important to highlight. First, although craving levels at Time 1 were well matched between the control and decentering groups, they were numerically lower in the visualisation group. At Times 3 and 4, the effects of the strategies on craving reduction are also more difficult to interpret since participants had already employed their assigned strategy during the development stage and levels of craving were higher among control group participants compared to those in the experimental groups. To address this issue, future research would benefit from assessing effects on craving development and craving reduction on separate occasions.

Second, the study did not include any follow-up measures of craving. For example, Schumacher et al. (2017), measured craving at three time points, with the final measurement taking place 10 minutes after the experimental manipulation. This type of follow-up measure would help explore the extent to which reductions in craving can be maintained over time and would help rule out any rebound effects. This may be particularly important given that levels of craving appeared to rise more steeply during the craving induction phase (between Times 2 and 3) among those in the decentering and visualisation conditions.

Third, we did not include a measure of consumption so cannot be sure of the extent to which differences in cravings would translate into differences in consumption. Other research has shown that reductions in cravings do not always lead to reductions in consumption (Schumacher et al., 2017). Additional research is needed to explore this further as well as examine the effects of these strategies on craving and consumption outside the laboratory; research by Schumacher et al. (2018) indicates that decentering and visualisation strategies similar to those used in the present study can reduce both levels of craving and consumption outside the laboratory.

Finally, in contrast to many previous studies on food cravings, we included males in our sample as well as females. Although females reportedly experience stronger food cravings...
Chocolate craving

than males (Hormes et al., 2014), craving management may be just as important for men who
are attempting to lose weight or quit other substances such as cigarettes. It is therefore
important that the study of craving amongst males is not neglected. Although our study was
not powered to examine sex differences in the efficacy of these strategies for craving
management, this could be usefully explored in future research.

In summary, the results of this study add to a growing body of literature that suggests that
decentering strategies may be helpful for managing cravings as well as achieving healthy
eating and weight loss goals (Caselli & Spada, 2016; Jenkins & Tapper, 2014; Lacaille et al.,
2014; Papies & Barsalou, 2015; Tapper, 2017, 2018; Tapper & Ahmed, 2018). Given the
simplicity of the decentering strategy used in the current study, it would also be relatively
easy to incorporate it into existing weight management and healthy eating interventions.

Acknowledgements

We are very grateful to everyone who participated in this study.

Author contributions

EW contributed to study design, collected the data, took the lead on data analysis and wrote
the first draft of the manuscript. KT took the lead on study design, contributed to data
analysis and wrote sections of the paper. All authors contributed to data interpretation and to
the final version of the manuscript.

Funding sources

This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Conflict of interest

Conflicts of interest: none

References
Chocolate craving

https://doi.org/10.1016/j.appet.2012.02.044

https://doi.org/10.1093/clipysy.bph077

https://doi.org/10.1521/ijct.2016.09.15

https://doi.org/10.1016/j.appet.2011.08.017

https://doi.org/10.1007/978-1-61779-803-0_36

https://doi.org/10.1016/j.appet.2013.08.005

https://doi.org/10.1348/135910704X14249
Chocolate craving

May, J., Andrade, J., Batey, H., Berry, L.-M., & Kavanagh, D. J. (2010). Less food for thought. Impact of attentional instructions on intrusive thoughts about snack foods. *Appetite, 55*(2), 279-287. https://doi.org/10.1016/j.appet.2010.06.014

Chocolate craving

Shiffman, S. (2000). Comments on craving. *Addiction, 95*(8), 171-175. https://doi.org/10.1046/j.1360-0443.95.8s2.6.x

Chocolate craving

